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Abstract

An experimental delta wing/store model with freeplay in a periodic gust field has been designed and tested in the Duke

wind tunnel. The wing structure is modeled theoretically using von Karman plate theory that accounts for geometric

strain–displacement nonlinearities in the plate wing structure. A component modal analysis is used to derive the full

structural equations of motion for the wing/store system. A 3-D time domain vortex lattice aerodynamic model including a

reduced order model aerodynamic technique and a slender body aerodynamic theory for the store are also used to

investigate the nonlinear aeroelastic system. The effects of the freeplay gap, the gust angle of attack and the initial

conditions on the gust response are discussed. The quantitative correlations between the theory and experiment are

reasonably good, but in the range of the dominant resonant frequency of this nonlinear system, i.e. at larger response

amplitudes, the correlations are not good. The theoretical structural model needs to be improved to determine larger

amplitude motions near the resonant frequency.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The emphasis in the field of aeroelasticity is on the interaction among aerodynamic, structural elastic and
inertia forces. Limit cycle oscillations (LCO), or nonlinear aeroelastic responses, have received particular
attention in recent years. For a more in-depth discussion of these issues, see a recent review paper [1]. Much of
the literature is concerned with self-excited oscillations, i.e. flutter and the associated LCO. However,
nonlinear aeroelastic response of an aircraft operating in a gust field is also of interest. The gust source is
atmospheric turbulence usually modeled as a random gust or a periodic gust. In the late 1980s, the Federal
Aviation Administration requested assistance from NASA for initial evaluation of a candidate method for
analysis of gust loads on aircraft with nonlinearities. The statistical discrete gust (SDG) method [2] has been
proposed to permit analysis of nonlinear aircraft models for gust loads. As a time-domain method, it also
permits the computation of time-correlated gust loads. NASA conducted an evaluation of the SDG method,
focusing on its relationship to existing linear methods [3]. Optimization of a wing structure for gust response
[4] using the computer code ASTROS [5] and a study of gust alleviation using state-space aeroelastic modeling
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

ai; bj generalized coordinates in x- and y-
directions, respectively

c delta wing root chord
D delta wing plate bending stiffness
d nondimensional freeplay gap of the store,

d=h

E Young’s modulus
h delta wing plate thickness
km; kn numbers of vortex elements on delta

wing in x- and y-directions, respectively
kmm total number of vortices on both the

delta wing and wake in the x-direction
L delta wing span
m delta wing panel mass/area, m ¼ hrm

mxy number of delta wing modal functions in
the x- and y-plane defining u; v

nxy number of delta wing modal functions in
the z-direction defining w

q; _q state-space vector
qn generalized coordinate in the z-direction
Qij generalized aerodynamic force
Ra size of reduced order aerodynamic model
t time
U airspeed
u; v in-plane displacements
Ui;V j modal functions in x- and y-directions

w plate transverse deflection
wg;wg0 nondimensional lateral gust velocity and

amplitude
W k transverse modal function in z-direction
x; y streamwise and spanwise coordinates
X ;Y right and left eigenvector matrices of

vortex lattice eigenvalue model
z normal coordinate
ag gust angle of attack
ag0 gust angle amplitude for a sinusoid gust
ag1,ag2 first and second gust angle amplitudes for

a measured gust
b store pitch angle
d freeplay gap of the store
Dp aerodynamic pressure loading on panel
Dp nondimensional aerodynamic pressure,

Dp=ðr1U2Þ

Dt time step, Dx=U

Dx plate element length in the streamwise
direction

g reduced vortex strength
G vortex strength
n Poisson’s ratio
og gust frequency
r1;rm air and plate densities
y state-space vector
t time parameter,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc4=D

p
ð
�
Þ dðÞ=dt
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[6] have been proposed. These studies have made significant contributions to gust response methods for
treating real aircraft.

In previous work, the present authors and colleagues have used a series of relatively low-cost, simple
aeroelastic models of a wing, wing/store and a typical airfoil to study the fundamental mechanisms of
nonlinear aeroelastic response to a gust. To create an experimental gust field, a rotating slotted cylinder (RSC)
gust generator was designed and installed in the Duke University low-speed wind tunnel based upon a concept
developed by W.H. Reed III. Either a sinusoidal gust or a linear frequency sweep gust excitation can be
produced. This gust field can also simulate turbulence with a uniform power spectral density over a certain
frequency band in the lateral and longitudinal directions [7].

A nonlinear gust response analysis and correlation with wind tunnel tests of a typical airfoil section with
control surface freeplay model were made [8]. An electro-magnetic dry friction damper was also designed,
manufactured and installed in this airfoil. The nonlinear damper can be used to alleviate the dynamic response
to both a periodic and a linear frequency sweep gust excitation, especially for the plunge and pitch response of
the three degrees of freedom airfoil model [9,10].

A high-aspect-ratio wing model was also studied with structural equations of motion based on nonlinear
beam theory combined with the ONERA aerodynamic stall model. The effects of geometric structural
nonlinearity and steady angle of attack on nonlinear gust response of a high-aspect-ratio wing were
considered [11,12]. Other related work for the high-aspect-ratio wing model studied the nonlinear response
to lateral turbulence in sinusoidal pulsating flow created by the RSC gust generator. This gust field was
also used to simulate a rotor blade operating condition [13,14]. Again theory and experiment showed
good correlation.
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A 3-D low-aspect-ratio wing (delta wing) model was made as well. Structural equations of motion based on
a nonlinear plate theory (von Karman plate equations) were combined with a 3-D time domain vortex lattice
aerodynamic model (linear model). A reduced order aerodynamic technique was used to investigate the
nonlinear aeroelastic response and the effects of steady angle of attack. Results were obtained and correlated
from both theoretical and experimental studies [15,16].

Most recently, and following the work of Tang et al. [15], an experimental model with a wing/store model
with and without freeplay has been designed [17,18] for the study of flutter and LCO. The wing is modeled as a
simple plate of constant thickness. The store is modeled as a slender rigid body that contacts the wing through
two support points. The fore support point is articulated to the wing and the aft support point contacts the
wing through a spring with a freeplay gap. The store is assumed to have motion relative to the wing in only
one degree of freedom (dof), i.e. in pitch. Thus the store itself is a single dof excited by nonlinear forces
from the wing through the two support points and the freeplay gap. In the present paper, we develop a
mathematical model and computational code in the time domain to calculate the nonlinear gust response of a
delta wing/store model with a store pitch freeplay gap at low subsonic flow speeds. Sinusoidal and linear
frequency sweep gust loads are considered. A 3-D time domain vortex lattice aerodynamic model combined
with a reduced order model aerodynamic technique and a slender body aerodynamic theory for the store are
used to investigate the nonlinear aeroelastic system.

In order to validate the theoretically predicted gust response characteristics of the delta wing/store model,
an experimental investigation has been carried out in the Duke wind tunnel using a RSC gust generator. The
results may be helpful in better understanding physically the nonlinear aeroelastic response of a delta wing/
store model with freeplay to gust loads and the capability of von Karman nonlinear plate theory for describing
the gust response of this experimental model.

2. State-space equations

A schematic of the delta wing-plate/store geometry is shown in Fig. 1(a) and a photograph of the
experimental delta wing-plate/store model and gust generator in the wind tunnel is shown in Fig. 1(b).

The aeroelastic structure/fluid state-space equations are described next.

2.1. Nonlinear structural model

A component modal analysis [19] is used to derive the full structural equations of motion for the wing/store
combination system.

The plate wing and store structures can be viewed as separate components that can be analyzed individually
and then joined through an appropriate constraint function. The full structural equations of motion can thus
be obtained in a very compact form. The kinetic, potential energies and the generalized nonconservative work
of the plate wing are based upon the von Karman plate theory as discussed in Ref. [15]

The classical Rayleigh–Ritz approach will be used here. In the Rayleigh–Ritz approach the original
displacement variables, u; v;w, which are functions of x, y and t are expanded in a series of the product of
time-dependent modal coordinates and space-dependent global functions. We expand the transverse or out-of-
plane displacement, w and the in-plane displacements u and v, as follows:

uðx; y; tÞ ¼
X

m

amðtÞUmðx; yÞ; m ¼ 1 . . .mxy, ð1Þ

vðx; y; tÞ ¼
X

n

bnðtÞV nðx; yÞ; n ¼ 1 . . .mxy, ð2Þ

wðx; y; tÞ ¼
X

k

qkðtÞckðx; yÞ; k ¼ 1 . . . nxy, ð3Þ

where the transverse natural mode function, ckðx; yÞ is calculated using a 2-D finite-element method for the
delta wing plate. The in-plane natural mode functions, Uiðx; yÞ and V jðx; yÞ, are calculated by a 3-D finite-
element method. All such calculations are done using a standard computational code, ANSYS [20]. These
functions satisfy the boundary conditions (partial root clamp) of the cantilevered delta wing.
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Fig. 1. A delta wing model with an external store in the wind tunnel: (a) schematic diagram of wing/store model, (b) photograph of wing/

store model.
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The potential energy of the store is expressed as

Vb ¼ 1
2

ksðZ1 þ be2 � Z2Þ
2;

ks ¼
kso if jZ1 þ be2 � Z2jXd;

0 otherwise;

(
8>><
>>: (4)

where kso; d are the attachment stiffness between the wing and store at the aft attached point and the
corresponding freeplay gap, respectively.

The kinetic energy of the store is

Tb ¼ 1
2
ðM1

_Z
2

1 þM2
_Z
2

2 þ Jb
_b
2
Þ. (5)

The generalized nonconservative work for the store can be expressed as

dWb ¼Mbdb. (6)

In Eqs. (4)–(6) ðp1Þ (fore) and ðp2Þ (aft) are the attachment points between the wing and the store; M1 is the
mass of the store and M2 is the mass at the aft attachment point, Z1 and Z2 are the displacements of the fore
and aft attachment points of the store, respectively. e2 and e3 are the distances between fore and aft
attachment points of the store and between the fore attachment point and the mass center of the store,
respectively. Mb is a aerodynamic moment loading on the store.



ARTICLE IN PRESS
D. Tang, E.H. Dowell / Journal of Sound and Vibration 295 (2006) 659–684 663
The constraint conditions in the fore and aft attached points between the wing and the store may be
expressed as

f 1 �
Xnxy

k¼1

qkckðp1Þ � Z1 ¼ 0, (7)

f 2 �
Xnxy

k¼1

qkckðp2Þ � Z2 ¼ 0. (8)

The Lagrangian is

L ¼ T � V þ
X2
i¼1

lif i ¼ Tp þ Tb � V p � Vb þ l1f 1 þ l2f 2,

where li are Lagrange multipliers.
Lagrange’s equations for this constrained system are derived with respect to qk;Z1;Z2; l1; l2 and b to obtain

the following six sets of equations:

mk½ €qk þ ðokÞ
2qk� �Qk � Fb þ F k

N ¼ l1ckðp1Þ þ l2ckðp2Þ, (9)

M1
€Z1 þ ksðZ1 � Z2 þ e2bÞ ¼ �l1, (10)

M2
€Z2 þ ksðZ2 � Z1 � e2bÞ ¼ �l2, (11)

Jb
€bþ kse

2
2bþ ksðZ1 � Z2Þ �Mb ¼ 0, (12)

Xnxy

k¼1

qkckðp1Þ � Z1 ¼ 0, (13)

Xnxy

k¼1

qkckðp2Þ � Z2 ¼ 0, (14)

where F k
N is a nonlinear force which depends upon the deflection of wing, i.e.

F k
N ¼

Xmxy

m¼1

Xnxy

l¼1

amqlK1mlk þ
Xmxy

n¼1

Xnxy

l¼1

bnqlK2nlk þ
Xnxy

r¼1

Xnxy

s¼1

Xnxy

t¼1

qrqsqtK3rstk,

Qk;Fb;Mb are the generalized aerodynamic forces on the wing and on the store.
Eliminating Z1;Z2; l1 and l2, from the above equations, one obtains

mk €qk þM1ckðp1Þ
Xnxy

k¼1

€qkckðp1Þ þM2ckðp2Þ
Xnxy

k¼1

€qkckðp2Þ þmko2
kqk

þ ksDck

Xnxy

k¼1

qkDck � e2b

" #
¼ Qk � Fk

N þ Fbckðp1Þ; k ¼ 1 . . . nxy, ð15Þ

Jb
€bþ kse

2
2b� kse2

Xnxy

k¼1

qkDck ¼Mb þM1e3, (16)

ks ¼
kso if jbe2 �

Pnxy
k¼1 qkDckjXd;

0 otherwise;

(
(17)

where Dck � ckðp2Þ � ckðp1Þ.
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Lagrange’s equations for this constrained system are also derived with respect to am; bn to obtain the
following two sets of equations:

Xmxy

i¼1

aiA1im þ
Xmxy

j¼1

bjB1jm ¼
Xnxy

l¼1

Xnxy

o¼1

qlqkC1lkm; m ¼ 1 . . .mxy, (18)

Xmxy

i¼1

aiA2in þ
Xmxy

j¼1

bjB2jn ¼
Xnxy

l¼1

Xnxy

o¼1

qlqkC2lkn; n ¼ 1 . . .mxy. (19)

Note that the store (slender body) drag is neglected in the present analysis.

2.2. Aerodynamic model

2.2.1. Vortex lattice aerodynamic model for the delta wing

A spanwise uniform periodic lateral gust is used, i.e. the gust velocity is only a function of chordwise
position and time, wg ¼ wgðx; tÞ, and it is normalized by airspeed, U. The gust wavelength is defined as

lg ¼ U=o,

where o is the gust excitation frequency, rad/s.
A continuous sinusoidal gust time history at the xi position on the delta wing can be expressed as

wgðx; tÞ ¼ wg0 sinðot� DfÞ, (20)

where a phase difference is defined as Df ¼ xi=lg; or Df ¼ kxi=CSB, where CSB is the chord of the store and k

is a reduced frequency, k ¼ oCSB=U .
The flow about the cantilever wing is assumed to be incompressible, inviscid and irrotational.

Here, we use an unsteady vortex lattice method to model this flow. The delta wing and wake are
divided into a number of elements. In the wake and on the wing all the elements are of equal size, Dx,
in the streamwise direction. Point vortices are placed on the plate and in the wake at the quarter
chord of the elements. At the three-quarter chord of each plate element a collocation point is placed
for the downwash, i.e. we require the velocity induced by the discrete vortices to equal the total
downwash arising from the unsteady motion of the delta wing and also the gust. Thus we have the
relationship,

dwtþ1
i ¼

qwi

qt

� �tþ1

þU
qwi

qx

� �tþ1

þ wtþ1
g;i ; i ¼ 1; . . . ; km, (21)

where dwtþ1
i is the total downwash at the ith collocation point at time step tþ 1. An aerodynamic matrix

equation is given by

AGtþ1 þ BGt ¼ T dwtþ1, (22)

where A and B are aerodynamic coefficient matrices, see Ref. [21], and ½T � is a transfer matrix for determining
the relationship between the global vortex lattice mesh and local vortex lattice mesh on the delta wing plate.

From the fundamental aerodynamic theory, we can obtain the pressure distribution on the plate at the jth
point in terms of the vortex strengths. The aerodynamic pressure is given by

Dpj ¼
r1
Dx

UðGtþ1
j þ Gt

jÞ=2þ
Xj

i

DxðGtþ1
i � Gt

iÞ=Dt

" #
(23)

and the aerodynamic generalized force is calculated from

Qk ¼

Z Z
Dpck dxdy ¼

XNN

j¼1

Dpjckðxj ; yjÞDxDy. (24)
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2.2.2. Slender body aerodynamic model for the store

The vertical displacement at any point of the store is

Za ¼ �Z1 � b½xb � e1�, (25)

where e1 is the distance from leading edge to the elastic axis of the slender body. xb is the chordwise position of
the store. Here Z1, þup, and b, þnose up and wgðxb; tÞ is a gust velocity. Now the downwash or convected
vertical velocity is

waðxb; tÞ ¼
qZa

qt
þU

qZa

qxb
þ wgðxb; tÞ. (26)

We follow Bisplinghoff et al. [22],

dFb

dxb
¼ �r1

DS

Dt

qZa

qt
þU

qZa

qxb
þ wgðxb; tÞ

� �
� r1S

D

Dt

qZa

qt

� �
þU

D

Dt

qZa

qxb

� �
þ

Dwg

Dt

� �
, (27)

where D=Dt � q=qtþU q=qxb, S � body cross-sectional area and S ¼ pR2, for a circular cross-section of
radius, RðxbÞ.

Note that

DS

Dt
¼ U

dS

dxb
.

Then Eq. (27) becomes

dFb

dxb
¼ �r1U

dS

dxb

DZa

Dt
þ wg

� �
� r1S

D2Za

Dt2
þ

Dwg

Dt

� �
. (28)

Now, Fb �
R cSB
0
ðdFb=dxbÞdxb and Mb �

R cSB
0

dFb=dxb½xb � e1�dxb, where cSB � chord of slender body.
Finally,

Fb ¼ r1½ €Z1 þU _b�
Z cSB

0

S dxb þ r1 €b
Z cSB

0

S½xb � e1�dxb þ Fb
g (29)

and

Mb ¼ r1U ½ _Z1 þUa�
Z cSB

0

S dxb � r1 €Z1

Z cSB

0

S½xb � e1�dxb � r1 €b
Z cSB

0

S½xb � e1�
2 dxb þMb

g , (30)

where the gust aerodynamics are

Fb
g ¼ �r1U

Z cSB

0

dS

dxb
wg dxb þ r1

Z cSB

0

S
Dwg

Dt
dxb (31)

and

Mb
g ¼ �r1U

Z cSB

0

dS

dxb
wgðxb � e1Þdxb þ r1

Z cSB

0

S
Dwg

Dt
ðxb � e1Þdxb. (32)

As shown in Eqs. (31) and (32), the gust aerodynamic load acting on the store depends upon the gust
wavelength over the store chord.

2.3. Aeroelastic state-space equations

Consider a discrete time history of the delta wing, qðtÞ, and the store, bðtÞ, with a constant sampling time
step, Dt. The structural dynamic equations (15)–(17), can be reconstituted as a state-space equation in discrete
time form as

½D2�fygtþ1 þ ½D1�fygt þ ½C2�fGgtþ1 þ ½C1�fGgt ¼ �fF
p
Ng

tþ1=2 þ fF
b
Ng

tþ1=2 þ fF GðwgÞg
tþ1, (33)
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where the vector fyg is the state of the plate, fyg ¼ f _q; _b; q;bg and ½D1�; ½D2� are matrices describing the wing
plate and store structural behavior. ½C1�; ½C2� are matrices describing the vortex element behavior on the delta
wing itself. fF

p
Ng and fF

b
Ng are the nonlinear force matrices generated by the wing plate structural nonlinearity

and the freeplay junction between the wing and store, respectively. fFGðwgÞg are the gust aerodynamic
generalized forces.

There is a linear relationship between the downwash w at the collocation points and delta wing response,
fyg. It is defined by

fwg ¼ ½E�fyg. (34)

In addition, of course, there is a downwash due to the gust given by Eqs. (22) (for the delta wing)
and (27) (for the store). Thus, we obtain a complete aeroelastic state-space equation in matrix
form:

A �E

C2 D2

" #
G

y

� �tþ1

þ
B 0

C1 D1

" #
G

y

� �t

¼
0

ð�F
p
N þ F

b
N Þ

tþ1=2

( )
þ

wtþ1
g

FGðw
tþ1=2
g Þ

8<
:

9=
;. (35)

3. Reduced order aerodynamic model

If we assume the structural response to be zero and no gust excitation, then from Eq. (23) one obtains a
representation of the unforced fluid motion,

AGtþ1 þ BGt ¼ 0. (36)

From Eq. (36), an aerodynamic eigenvalue problem may be formed. Since the matrices A and B

are nonsymmetric, we must compute the right and left eigenvalues and eigenvectors of the generalized
eigenvalue problem.

Let X and Y be the right and left eigenvector matrices, and Z is a diagonal matrix whose diagonal entries
contain the eigenvalues. The right and left eigenvectors are orthogonal with respect to the matrices, A and B.
We normalize the eigenvectors such that they are orthonormal with respect to A.

The vortex lattice aerodynamic model may be ‘‘reduced’’ using aerodynamic eigenmodes [23].
To accomplish this a transformation from the original flow variables fGg to the modal variables fgg is
made

G ¼ X Ra
g,

where g is the vector of the aerodynamic modal coordinates. G, be a linear combination of the Ra right
eigenvectors (where usually in practice Ra5 total number of aerodynamic eigenvalues). To account for
the neglected eigenmodes therefore, we use a quasi-static correction which accounts for much of their
influence. Let

G ¼ Gs þ Gd ¼ Gs þ X Ra
gd ,

where the first term on the right-hand side is a quasi-static solution of the vortex flow and the second term is a
dynamic perturbation solution. By definition, the quasi-static portion Gs is given by

½Aþ B�Gt
s ¼ wt þ wt

g, (37)

where wt and wt
g are the downwashes at time step t. Compare Eqs. (22) and (37). Note that Eq. (37)

may be inverted once to determine Gt
s in terms of wt þ wt

g and does not need to be evaluated at each
time step.
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The reduced order model with static correction is thus given by

I �Y T
Ra
½I � AðAþ BÞ�1�E

C2X Ra
D2 þ C2ðAþ BÞ�1E

2
4

3
5 gd

y

( )tþ1

þ

�ZRa
þY T

Ra
BðAþ BÞ�1E

C1X Ra
D1 þ C1ðAþ BÞ�1E

2
4

3
5 gd

y

( )t

¼

0

�FN þ F
b
N þ FGðwgÞ

( )tþ1=2

þ
Y T

Ra
½I � AðAþ BÞ�1�

�C2ðAþ BÞ�1

2
4

3
5fwgg

tþ1 þ
�Y T

Ra
BðAþ BÞ�1

�C1ðAþ BÞ�1

2
4

3
5fwgg

t. ð38Þ
4. Numerical results

The theoretical model is a simple delta wing configuration with a leading edge sweep of 451 and constructed
from a 0.147-cm-thick plastic (Lucite ). The root chord is partially clamped (cantilevered) and the length
of the clamped portion of the root is 22.86 cm (60% root chord). The clamping is symmetric about
the center of the root chord of the model. The length of the root chord is 38.1 cm. We use the aerodynamic
vortex lattice model including 120 vortex elements on the delta wing ðkm ¼ kn ¼ 15Þ and 525 vortex
elements in the wake ðkmm ¼ 50Þ and nine reduced aerodynamic eigenmodes Ra ¼ 9. The delta wing
structural modal numbers are nxy ¼ 10 in the out-of-plane and mxy ¼ 200 in the in-plane directions,
respectively. The mesh of the finite-element model for the out-of- and in-plane structural model is 30� 30 and
thus the delta wing is modeled using 900 quadrilateral plate elements. The nodes at the clamped root
chord satisfy geometric boundary conditions, i.e. w ¼ u ¼ v ¼ yx ¼ yy ¼ yz ¼ 0. The first five natural
frequencies of the delta wing plate alone are 4.39, 17.84, 20.62, 42.21 and 51.87Hz. These results are obtained
from a finite-element method using a standard code, ANSYS. The corresponding experimental results are
discussed in Section 5.

The store is a slender body attached at the fore and aft support points of the delta wing. The slender body is
a plastic tube, 1.59 cm in outside diameter and 13.6 cm in length. A paraboloidal forebody with 2.54 cm length
is fixed to the fore end of the tube. The geometry of the paraboloidal forebody is described as

R=R0 ¼ x2
SB; xSB ¼ 0 �!1.

The slender body is symmetrical. The distance between the fore and aft attachment points is e2 ¼ 10 cm.
Jb ¼ 0:4108E�4 Nms2, ks ¼ 35:8N=m. As shown in Fig. 1, e1 ¼ 12:7 cm, e3 ¼ �2:1 cm. M1 ¼ 0:033 kg,
M2 ¼ 0:0055 kg. As shown in Eqs. (29) and (30),

R cSB
0 S dxb ¼ 3:045E�5 m3,

R cSB
0 S½xb � e1�dxb ¼ 4:58E�7 m4

and
R cSB
0 S½xb � e1�

2 dxb ¼ 7:657E�8 m5.
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Fig. 2. Linear and nonlinear gust frequency responses for U ¼ 20m=s and gust angle amplitude of ag0 ¼ 0:1�: (a) wing tip frequency

response, (b) store pitch frequency response; dashed line with �, linear; solid line with �, nonlinear.
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4.1. Response to a periodic gust without freeplay

The theoretical lateral gust velocity amplitude is assumed to be wg0 ¼
0:1
57:3�U or ag0 ¼ 0:1� for the basic

case of a single harmonic gust load, see Eq. (20). Firstly, zero freeplay gap of the store is considered. Fig. 2
shows typical rms amplitude of the nondimensional wing tip response (Fig. 2(a)) and the store pitch response
(Fig. 2(b)) vs. the gust frequency for the flow velocity, U ¼ 20m=s and gust angle amplitude, ag0 ¼ 0:1�. To
illustrate and contrast the effects of the wing structural nonlinearity on the gust response, the linear results are
also plotted on this figure. As shown in Fig. 2(a) for the nondimensional wing tip response, there is a dominant
peak rms amplitude at the gust frequency of 5.5Hz for the linear system and 6.2Hz for the nonlinear system.
The wing structural nonlinearity leads to a higher structural stiffness. Thus, the response amplitude decreases
and the peak frequency increases when structural nonlinearities are included in the theoretical analysis. In the
higher gust frequency range ðog412HzÞ, the response amplitude is smaller and the linear and nonlinear
results are the same. As shown in Fig. 2(b), the dominant peak frequency for the store pitch response is
11.5Hz for the nonlinear system and 9.5Hz for the linear system. The dominant peak frequency for the wing
tip and the store pitch responses is different, because the wing tip response is very sensitive to the bending
modes (first bending mode for this case) and the store pitch response is sensitive to the dominant store pitch
mode.

Fig. 3 shows rms amplitude of the nondimensional wing tip response (Fig. 3(a)) and the store pitch response
(Fig. 3(b)) vs. the gust frequency for the several flow velocities, U ¼ 10, 20 and 28m/s and a gust angle
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amplitude, ag0 ¼ 0:1�. Note that the linear flutter velocity is 24.5m/s. Three points are of interest. First of all,
for the wing tip response as shown in Fig. 3(a), the frequency corresponding to the peak amplitude increases as
the flow velocity increases, i.e. growing from 4.5, 6.2 to 7.5Hz when the flow velocity increases from 10, 20, to
28m/s. This is expected due to the increase of the aerodynamic stiffness with increasing flow velocity and the
wing geometrical nonlinearity. Secondly, for the store pitch response as shown in Fig. 3(b) the peak frequency
is almost independent of the flow velocity, i.e. 11.5Hz. This means that the resonant frequency dominated by
the store pitch mode is not sensitive to the flow velocity. Thirdly, there is a rapid decreases in wing tip response
at a gust frequency of 12.5Hz for the flow velocity that is higher than the flutter velocity. Recall the flutter
frequency is 9Hz. It is interesting to find that the wing tip and the store pitch responses beyond 12.5Hz are
lower than the LCO amplitude when no gust load is present as shown in Figs. 4(a) and (b).

Fig. 5 shows rms amplitude of the nondimensional wing tip response (Fig. 5(a)) and the store pitch response
(Fig. 5(b)) vs. the gust frequency for the flow velocity, U ¼ 20m=s and several gust angle amplitudes. For the
wing tip response as shown in Fig. 5(a), the frequency corresponding to the peak amplitude increases as the
gust angle amplitude increases, i.e. growing from 6.2, 9, 11 to 13Hz when the gust angle amplitude increases
from 0.11, 0.31, 0.51 to 0.751. This is because the effect of the wing geometrical nonlinearity on the first wing
natural bending mode becomes stronger when the aerodynamic forces increase. For the store pitch response as
shown in Fig. 5(b) the peak frequency increases from 11.5 to 13Hz as the gust angle amplitude increases. Also
it is interesting to note that there are some rapid changes in responses at the peak response frequencies for the
higher gust angle amplitudes for the wing tip response.

Figs. 6(a) and (b) show typical time histories of the nondimensional wing tip response (Fig. 6(a)) and the
store pitch response (Fig. 6(b)) for the flow velocity, U ¼ 28m=s, ag0 ¼ 0:1� and gust frequency 5Hz. Both the
wing tip and store pitch responses are periodic motions. Fig. 6(c) shows the FFT analysis corresponding to
Figs. 6(a) and (b). The dominant peak frequency is 5Hz and the response at 15Hz is most important for the
store pitch motion (dominant store pitch mode). The response at 25Hz corresponds to the second bending
mode of this system.

4.2. Response to a periodic gust with freeplay

Now both the store freeplay nonlinearity and the wing geometric structural nonlinearity of the wing–store
model are considered. Two freeplay gap values, d ¼ d=h ¼ 0:5, 1.0 are chosen for the calculations.

Fig. 7 shows rms amplitude of the nondimensional wing tip response (Fig. 7(a)) and the store pitch response
(Fig. 7(b)) vs. the gust frequency for several flow velocities, U ¼ 10, 20 and 28m/s and gust angle amplitude,
ag0 ¼ 0:1� and freeplay, d ¼ 0:5. When we compare Fig. 7 to 3 for d ¼ 0, it is interesting to find the response
behavior in the frequency range of 1–12.5Hz is very similar for the wing tip motions. In the higher frequency
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range, the wing tip amplitude becomes larger as the flow velocity increases and the frequency response is more
complex with freeplay than without. For the store pitch response, Fig. 7(b) for d ¼ 0:5 and Fig. 3(b) for d ¼ 0
are entirely different. The frequency response curve becomes very irregular with freeplay. This is because the
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wing tip and store pitch motions become nonperiodic or chaotic with freeplay ðd ¼ 0:5Þ rather than the
periodic motions without freeplay ðd ¼ 0Þ. For an explanation of this phenomenon, a set of figures for a
typical example, U ¼ 28m=s, ag0 ¼ 0:1�, gust frequency 5Hz and d ¼ 0:5 are shown in Fig. 8. Note that this
example is the same as Fig. 6, but da0.

Figs. 8(a) and (b) show the time histories of the nondimensional wing tip response (Fig. 8(a)) and the store
pitch response (Fig. 8(b)). Comparing Fig. 8(a) for d ¼ 0:5 to 6(a) for d ¼ 0, the rms wing tip amplitudes are
almost identical but the motion time history is different. Comparing Fig. 8(b) to 6(b), both the store pitch
amplitudes and motion behavior are entirely different. Figs. 8(c) and (d) show the phase plane plots of w=h vs.
_w=h and b vs. _b. There are two rest points (equilibrium positions) for the pitch motion, i.e. �0:43� and þ0:43�.
The response motion is nonperiodic around the two rest points. The FFT analysis of the wing tip and the store
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pitch motions is shown in Fig. 8(e) (note the logarithmic scale). There is a dominant harmonic peak
component (at 5Hz) and also higher harmonic components for the wing tip motion. For the store pitch
motion the dominant harmonic peak component is at 11Hz but there is a complex response overall.
Comparing Fig. 8(e) to 6(c), a very significant difference is observed.

Now consider the effects of the freeplay gap on the gust response. Two typical flow velocities, U ¼ 20 and
28m/s are used in the calculations. For the flow velocity lower than the flutter, U ¼ 20m=s, the results are
shown in Figs. 9(a) and (b) for the wing tip and the store pitch responses. Although there is a significant
difference in the store pitch response, the change in the wing tip response due to the freeplay gap is small.
However, as shown in Ref. [18] for the same wing/store model, the LCO (no gust) amplitude of the wing tip
response is significantly dependent on the store pitch response and the freeplay gap.

Figs. 10(a) and (b) show the time histories of the wing tip response (Fig. 10(a)) and the store pitch response
(Fig. 10(b)) for u ¼ 20m=s, d ¼ 0:5 and og ¼ 25Hz. A chaotic response for both the wing tip and the store
motion is found. Figs. 10(c) and (d) show the phase plane plots of w=h vs. _w=h and b vs. _b. The response
motion is nonperiodic around the two rest points, b ¼ �0:43� and þ0:43�. The FFT analysis of the store pitch
motions is shown in Fig. 10(e). There is a relatively broad frequency band width with a dominant harmonic
peak component at 25Hz.

For a flow velocity higher than the flutter velocity, results are shown in Figs. 11(a) and (b) for U ¼ 28m=s.
As shown in Fig. 11(a) for the wing tip response, there is a rapid decrease in response beyond a frequency of
12.5Hz which is similar to that of Fig. 4(a) for the model without freeplay. However, the response amplitude
beyond this frequency is higher than the no gust response amplitude (LCO) and this is different from the result
shown in Fig. 4 for the case of no freeplay.

The effects of gust angle amplitude on the gust response are considered next. Fig. 12 shows rms amplitude of
the nondimensional wing tip response (Fig. 12(a)) and the store pitch response (Fig. 12(b)) vs. the gust
frequency for the flow velocity, U ¼ 20, d ¼ 1:0 and several gust angle amplitudes. For the wing tip response
as shown in Fig. 12(a), the frequency corresponding to the peak amplitude increases as the gust angle
amplitude increases, i.e. growing from 6.2, 9 to 11 when the gust angle amplitude increases from 0.11, 0.31, to
0.51. The rapid change in response becomes clearer when the gust angle amplitude increases. For the store
pitch response as shown in Fig. 12(b), the motion is complex and chaotic. The rms amplitude vs. gust
frequency becomes very irregular.

As shown in Ref. [18], the effects of the initial conditions on the LCO (no gust amplitude) behavior can be
important. Here for the gust response, three initial condition cases, I.C.1, I.C.2 and I.C.3, are used. For I.C.1,
the nondimensional wing tip displacement is wð0Þ=h ¼ 0:001 and the wing displacement at other points on the
wing, the store pitch angle, bð0Þ, and the reduced vortex strength, gð0Þ, are zero. For I.C.2, the initial store
pitch angle, bð0Þ ¼ 0:5� but all wing displacements and all initial velocities are zero. Note that the static
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Fig. 10. Wing tip and store pitch response for U ¼ 20m=s, d ¼ 0:5, ag0 ¼ 0:1� and og ¼ 25Hz: (a) wing tip response, (b) store pitch

response, (c) _w=h vs. w=h, (d) _b vs. b, (e) FFT analysis; solid line, store pitch response (deg); dashed line, wing tip response (w=h).
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equilibrium position of the store for d ¼ 0:5 is 0:428�. For I.C.3, the initial store pitch angle bð0Þ ¼ 1:0� but all
wing displacements and all velocities are zero. Note that the static equilibrium position of the store for d ¼ 1:0
is 0:856�. The effects of the initial conditions are shown in the following figures.

Fig. 13 shows rms amplitude of the nondimensional wing tip response (Fig. 13(a)) and the store pitch
response (Fig. 13(b)) vs. the gust frequency for flow velocity, U ¼ 10m=s, the gust angle amplitude, ag0 ¼ 0:1�,
freeplay d ¼ 0:5 and the several initial conditions. The effects of the initial conditions on the gust response are
small for the smaller flow velocities.
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Fig. 14 shows rms amplitude of the nondimensional wing tip response (Fig. 14(a)) and the store pitch
response (Fig. 14(b)) vs. the gust frequency for flow velocity, U ¼ 28m=s, the gust angle amplitude, ag0 ¼ 0:1�,
freeplay d ¼ 1:0 and the several initial conditions. The effects of the initial conditions on the gust response are
still small except in the higher frequency range, og433Hz.

5. Theoretical and experimental correlations

5.1. Experimental model

The experimental delta wing and the store configurations are the same as those of the theoretical model. The
store pitch stiffness, ks, is 35.77N/m and corresponding store pitch natural frequency is 14.63Hz. The first five
natural frequencies of the delta wing plate alone are 4.39, 17.84, 20.62, 42.21 and 51.87Hz. These results are
obtained from a finite-element method using a standard code, ANSYS. The corresponding experimental
results are 4.5, 17.2, 20.54, 44.4 and 54.4Hz. A steel leaf-spring is inserted tightly into the store body near the
fore support (articulated point).

The free end of the leaf-spring is attached to the aft support point with a certain freeplay gap value. Two
strain gages are glued to both sides near the fixed end of the leaf-spring and are used to measure the store pitch
angle. The dynamic calibration coefficient was determined by a ground vibration test.

The gust was created by placing a rotating slotted cylinder (RSC) behind an airfoil upstream of the
delta wing model. The gust generator configuration in the wind tunnel had two airfoils or vanes and two
rotating slotted cylinders. The distance between these vanes was 1200. For details of the gust generator design,
see Ref. [7].

A micro-accelerometer is fixed on the wing mid-span of the trailing edge. The acceleration amplitude of the
gust response is measured from this transducer. The calibration coefficient is sa ¼ g=V, where g is the gravity
acceleration, g ¼ 9:81m=s2. A typical span location of the store for the ‘‘leading edge’’ case, y=c ¼ 0:68 (near
the wing tip), two freeplay gap values, d ¼ 0:5 and 1.0, and three flow velocities, U ¼ 10, 18.5 and 28m/s are
considered in the experiment. Note that the linear flutter velocity is 24.5m/s. A data acquisition system,
LabView 7.0 version, is used to obtain the measurement data. The sampling rate is 1000 points/s, Dt ¼ 1=1000,
and the total sampling length is 10 000 points. An ensemble averaged FFT analysis is used to determine the
response frequency using a time delay average method. The delay time is 2� Dt and the FFT analysis uses
2048 sampling points. The ensemble average number is 100. A rms acceleration amplitude is used to represent
the correlations between the theory and experiment. The experimental rms acceleration amplitude is obtained
from the time history over 10 000 sampling points.
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5.2. Gust field

In order to obtain a more meaningful correlation between theory and experiment, the gust field is measured
and quantitatively calibrated before the wing–store model test. For details of the gust field measurement, see
Ref. [7]. Fig. 15 shows the measured gust angle of attack, ag vs. gust excitation frequency, Hz, for the flow
velocities of U ¼ 10, 18.5 and 28m/s which are considered in the following theoretical and experimental
analysis. In this figure, a symbol � indicates the measured first and second harmonic components for the flow
velocity U ¼ 10m=s and the symbols � and n indicate the measured values for U ¼ 18:5 and 28m/s,
respectively. The solid lines are least-squares curve fittings of the experimental data. A formula based upon the
measured experimental gust angle of attack is constructed as

agðtÞ ¼ ag1 sinogtþ ag2 sinð2ogtþ DfÞ. (39)

Eq. (39) is used as an gust excitation to calculate the nonlinear gust response for comparison with the
experimental results where ag1 and ag2 are the first and second gust amplitude of the gust excitation. Df is a
phase difference between first and second gust frequencies. It is difficult to measure this phase angle for the
present RSC gust generator. Here, we assume Df ¼ 0 as an approximation.

Typical gust time histories and corresponding FFT analysis for several flow velocities and gust frequencies
corresponding to the data in Fig. 15 are shown in Figs. 18(a)–(c) and corresponding FFT plots in Figs. 17(f),
20(f) and 23(f).

5.3. Gust response

Fig. 16(a) shows the acceleration frequency response curves at the wing mid-span of the trailing edge for
flow velocity U ¼ 10m=s. The theoretical results are shown by a solid line for no freeplay gap ðd ¼ 0Þ, a
broken line for d ¼ 0:5 and a dashed line for d ¼ 1:0 that are based on the experimental gust angle vs. the gust
frequency curve of U ¼ 10m=s as shown in Fig. 15, and also for Fig. 19 (U ¼ 18:5m=s) and Fig. 22
(U ¼ 28m=s). The experimental results are shown by a symbol of � for no freeplay gap ðd ¼ 0Þ, a symbol of �
for d ¼ 0:5 and a symbol of n for d ¼ 1:0. Note that in Fig. 16, the measured response is not a pure harmonic
motion, therefore we use an average rms method to characterize the response for correlation purposes. The
store pitch angle frequency response curves corresponding to Fig. 16(a) are shown in (b). For the measured
store pitch response, the store pitch angle scaling is calibrated by the linear system, i.e. for no freeplay. With
freeplay, this scale is not precisely accurate because in the freeplay range, the strain of the leaf-spring is zero.
The error is at least 0:428� for d ¼ 0:5 and 0:856� for d ¼ 1. Thus we did not include the experimental data for
d ¼ 0:5 and 1.0 in this figure.
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For Fig. 16(a), there are three peak amplitudes near the gust frequencies, og ¼ 9:8, 12.5 and 22Hz. The
dominant peak amplitude is near og ¼ 9:8Hz which corresponds to the first bending mode of the aeroelastic
system. For the store pitch response, there is a peak amplitude near og ¼ 14:5Hz which is dominated by the
first torsional mode of the aeroelastic system. The quantitative agreement between the theory and experiment
is reasonably good except near the resonant frequency, og ¼ 9:8–10.5Hz.

Figs. 17(a) and (b) show the typical measured time responses of the wing acceleration (a), the store pitch
angle (b) for U ¼ 10m=s, og ¼ 19:5Hz and no freeplay gap ðd ¼ 0Þ. As shown in Fig. 17(a), there is a ‘‘beat’’
phenomenon. This is because of the unsteady gust load as shown in the gust time history of Fig. 18(a). The
theoretical time responses corresponding to Figs. 17(a) and (b) are shown in Figs. 17(c) and (d). The
corresponding theoretical and experimental FFT analysis is shown in Figs. 17(e) and (f). The dominant
frequency response component is located at the frequency, og ¼ 19:5Hz and there is a detectable 2og

frequency components in addition to a dominant og component for this measured nonlinear system. There is a
noise in the measured signals for both Figs. 17(e) and (f). This is because the gust field is unsteady. In order to
observe the relationship between the wing/store model dynamic response and the gust excitation, the measured
gust flow field (gust angle time history) for U ¼ 10m=s and og ¼ 19:5Hz is shown in Fig. 18(a). The
corresponding FFT analysis of the measured gust excitation is also plotted in Fig. 17(f). The dominant
harmonic amplitude of the gust angle is ag1 ¼ 1:43� and the second harmonic gust amplitude is ag2 ¼ 0:17�.

Fig. 19(a) shows the acceleration frequency response curves at the wing mid-span of the trailing edge for
flow velocity U ¼ 18:5m=s. The store pitch angle frequency response curves corresponding to Fig. 19(a) are
shown in Fig. 19(b). For Fig. 19(a), there are the very obvious peak amplitude near the gust frequency,
og ¼ 14Hz (theory) and og ¼ 14:7Hz (experiment) and the second theoretical peak amplitude at og ¼ 28Hz.
Both the theoretical and experimental results show that the acceleration amplitude increases as the freeplay
gap increases. It is also seen that the peak location is almost independent of the freeplay gap values both for
the theoretical and experimental results. The second peak amplitude is created by the wing structural
nonlinearity and second gust angle excitation. For the store pitch response, there is a no second harmonic
component. This means that the second harmonic component is dominated by only the wing bending mode.
The quantitative agreement is reasonably good except near the resonant frequency, og ¼ 14–15Hz.

Figs. 20(a) and (b) show the typical measured time responses of the wing acceleration (a), the store pitch
angle (b) for U ¼ 18:5m=s, og ¼ 11:9Hz and the freeplay gap, d ¼ 0:5. Note that for the store pitch response
with freeplay gap as shown in Fig. 20(b), the present measured store pitch data only provide qualitative
information. The store pitch response has a steady vibration around two equilibrium positions. The
theoretical time histories corresponding to Figs. 20(a) and (b) are shown in Figs. 20(c) and (d). The FFT
analysis corresponding to Figs. 20(a)–(d) is shown in Figs. 20(e) and (f). The dominant frequency response
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component is located at the frequency, og ¼ 11:9Hz and there are detectable 2og and 3og frequency
components in addition to a dominant og component. The 2og frequency component is excited by the second
gust frequency component as well the structural nonlinearity of the wing, and the 3og frequency component is
created by the structural nonlinearity of the wing. The theoretical 3og frequency component is stronger than
the 2og frequency component. However, the experimental 3og frequency component is weaker than the 2og

frequency component. This means the actual wing structure does not have so strong a structural nonlinearity
as described by the von Karman plate theory.

For analysis of the wing dynamic response, a measured gust excitation time history for U ¼ 18:5m=s,
og ¼ 11:9Hz is shown in Fig. 18(b). The corresponding FFT analysis of this gust excitation is also plotted in
Fig. 20(f). The dominant amplitude of the gust angle is ag1 ¼ 1:24� and the second gust amplitude is
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ag2 ¼ 0:19�. There is noise in the gust excitation, thus it enlarges the difference between the theory and
experiment.

When the freeplay gap and gust frequency increase from d ¼ 0:5 to 1.0 and og ¼ 11:9 to og ¼ 23Hz, the
results are shown in Figs. 21(a)–(f). It is found that the theoretical and experimental wing acceleration
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Fig. 20. Theoretical and experimental wing and store pitch responses for U ¼ 18:5m=s, d ¼ 0:5 and og ¼ 11:9Hz: (a) measured wing

response, (b) measured store pitch response, (c) theoretical wing response, (d) theoretical store response, (e) FFT of wing response; solid

line, theory; dashed line, test; (f) FFT of store response; solid line, theory; dashed line, test; dashed point line, test gust angle.
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responses are basically periodic with the dominant frequency component at 23Hz as shown in Fig. 21(e), but
both the theoretical and experimental store pitch responses are chaotic. There is a relatively broad frequency
band width near the lower frequency components and the energy spectrum is not small as shown in Fig. 21(f).

Figs. 22(a) and (b) show the wing acceleration and the store pitch angle frequency responses for a flow
velocity U ¼ 28m=s, that is larger than the linear flutter velocity. The symbols for the theoretical and
experimental results are the same as before. For Fig. 22(a), there is a very obvious theoretical peak amplitude
at the gust frequency, og ¼ 19Hz for no freeplay gap ðd ¼ 0Þ, og ¼ 18Hz for the freeplay gaps, d ¼ 0:5 and
1.0. These frequencies are the dominant resonant frequencies for the nonlinear system. The second wing peak
amplitude is near og ¼ 36Hz, but does not appear in the store pitch response. The reason is the same as
described in Fig. 19(b). The wing rms amplitude has a slight change when the freeplay gap increases from
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Fig. 21. Theoretical and experimental wing and store pitch responses for U ¼ 18:5m=s, d ¼ 1:0 and og ¼ 23Hz: (a) measured wing

response, (b) measured store pitch response, (c) theoretical wing response, (d) theoretical store response, (e) FFT of wing response; solid

line, theory; dashed line, test; (f) FFT of store response; solid line, theory; dashed line, test; dashed point line, test gust angle.

D. Tang, E.H. Dowell / Journal of Sound and Vibration 295 (2006) 659–684 681
d ¼ 0 to 1 for both the theory and experiment. This because the store pitch angle response has a smaller
change when the flow velocity is higher as shown in Fig. 22(b).

Large LCO are observed in the case of no gust excitation for U ¼ 28m=s. The rms amplitude at the wing
mid-span of the trailing edge is 0.11 g for d ¼ 0, 0.08 g for d ¼ 0:5 and 0.07 g for d ¼ 1:0 or the
nondimensional wing displacement is 0.2, for d ¼ 0, 0.1 for d ¼ 0:5 and 0.08 for d ¼ 1:0. To protect the
experimental model from a very large dynamic response, only a few gust excitation frequencies are chosen. In
general, the quantitative agreement between the theory and experiment is reasonably good.

When the gust frequency is higher, such as og ¼ 39Hz, the acceleration amplitude, 0.65 g, is larger than the
LCO amplitude (0.11 g) for the no gust case, but the nondimensional wing displacement is about 0.07 which is
smaller than the LCO amplitude (0.2). This phenomenon is observed in both the present theoretical and
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experimental data. When a gust angle of attack is smaller, this phenomenon is especially evident as shown in
Fig. 4 for ag0 ¼ 0:1�. It appears that a weak gust excitation with a high frequency can diminish the LCO
amplitude.

Figs. 23(a) and (b) show the typical measured time responses of the wing acceleration (a), and the
store pitch angle (b) for U ¼ 28m=s, og ¼ 13:6Hz and the freeplay gap, d ¼ 1:0. The store pitch
response has a steady vibration around two equilibrium positions and the wing response is a periodic
motion. The theoretical time responses corresponding to Figs. 23(a) and (b) are shown in Figs. 23(c) and
(d). The FFT analysis corresponding to Figs. 23(a)–(d) is shown in Figs. 23(e) and (f). The measured gust
angle of attack for U ¼ 28m=s, og ¼ 13:6Hz is shown in Fig. 18(c) and the corresponding FFT analysis is
also plotted in Fig. 23(f). The dominant amplitude of the gust angle is ag1 ¼ 1:3� and the second gust
amplitude is ag2 ¼ 0:21�.

As shown in Fig. 23(e), the dominant wing frequency response component is at the frequency o ¼ 13:6Hz
but the higher harmonic components are not small. The results are very similar to those for u ¼ 18:5m=s, but
the responses are dominated by the periodic motion.
6. Concluding remarks

The nonlinear gust response of a delta wing with an external store model are studied using von
Karman plate theory, a component modal analysis and a 3-D time domain vortex lattice aerodynamic model
including a reduced order model aerodynamic technique. Results are computed for different freeplay gap
values.

The theoretical results have been compared to experiment. The theoretical and experimental results show
that the wing gust response is significantly dependent on the store pitch motion and the gust angle of attack. In
general, the wing gust response amplitude increases as the freeplay gap or the gust angle increases and are
almost independent of the store pitch initial conditions. It is interesting to note that when the flow velocity is
beyond the linear flutter velocity, a smaller amplitude response is obtained for higher frequency gust
excitation. Such behavior can only occur in a nonlinear dynamic system. In principle this effect can be used to
alleviate the LCO response.

The quantitative correlations between the theory and experiment are reasonably good, but in the range of
the dominant resonant frequency of this nonlinear system, i.e. at larger response amplitude, the correlations
are not good. The theoretical model needs to be improved using a higher-order structural model as described
in Ref. [24].
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Fig. 23. Theoretical and experimental wing and store pitch responses for U ¼ 28m=s, d ¼ 1:0 and og ¼ 13:6Hz: (a) measured wing

response, (b) measured store pitch response, (c) theoretical wing response, (d) theoretical store response, (e) FFT of wing response; solid

line, theory; dashed line, test; (f) FFT of store response; solid line, theory; dashed line, test; dashed point line, test gust angle.
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